Response of wheat growth, grain yield and water use to elevated CO 2 under a Free‐Air CO 2 Enrichment (FACE) experiment and modelling in a semi‐arid environment
نویسندگان
چکیده
The response of wheat crops to elevated CO2 (eCO2 ) was measured and modelled with the Australian Grains Free-Air CO2 Enrichment experiment, located at Horsham, Australia. Treatments included CO2 by water, N and temperature. The location represents a semi-arid environment with a seasonal VPD of around 0.5 kPa. Over 3 years, the observed mean biomass at anthesis and grain yield ranged from 4200 to 10 200 kg ha-1 and 1600 to 3900 kg ha-1 , respectively, over various sowing times and irrigation regimes. The mean observed response to daytime eCO2 (from 365 to 550 μmol mol-1 CO2 ) was relatively consistent for biomass at stem elongation and at anthesis and LAI at anthesis and grain yield with 21%, 23%, 21% and 26%, respectively. Seasonal water use was decreased from 320 to 301 mm (P = 0.10) by eCO2 , increasing water use efficiency for biomass and yield, 36% and 31%, respectively. The performance of six models (APSIM-Wheat, APSIM-Nwheat, CAT-Wheat, CROPSYST, OLEARY-CONNOR and SALUS) in simulating crop responses to eCO2 was similar and within or close to the experimental error for accumulated biomass, yield and water use response, despite some variations in early growth and LAI. The primary mechanism of biomass accumulation via radiation use efficiency (RUE) or transpiration efficiency (TE) was not critical to define the overall response to eCO2 . However, under irrigation, the effect of late sowing on response to eCO2 to biomass accumulation at DC65 was substantial in the observed data (~40%), but the simulated response was smaller, ranging from 17% to 28%. Simulated response from all six models under no water or nitrogen stress showed similar response to eCO2 under irrigation, but the differences compared to the dryland treatment were small. Further experimental work on the interactive effects of eCO2 , water and temperature is required to resolve these model discrepancies.
منابع مشابه
Elevated CO2, drought and soil nitrogen effects on wheat grain quality
• The likely consequences of future high levels of atmospheric CO 2 concentration on wheat ( Triticum aestivum L.) grain nutritional and baking quality were determined. • Two free-air CO 2 enrichment (FACE; 550 mmol mol − 1 ) experiments were conducted at ample (Wet) and limiting (Dry) levels of irrigation, and a further two experiments at ample (High-N) and limiting (Low-N) nitrogen concentrat...
متن کاملEvaluation of Crop Water Stress Index, Canopy Temperature and Grain Yield of Five Iranian Wheat Cultivars Under Late Season Drought Stress
Abstract In order to evaluate crop water stress index (CWSI) and canopy temperature of wheat cultivars under terminal drought stress, a field experiment was conducted at the Agricultural Research Station of Shiraz University, Shiraz, during 2009 growing season. Five wheat cultivars including Shiraz, Bahar, Pishtaz, Sistan and Yavaros and four levels of water regime including well watering [Irr...
متن کاملYield Components and Grain Yield Responses of Four Wheat Cultivars to Growth Retardant Cycocel under Terminal Drought Stress Conditions
This research was carried out to study the grain yield, yield components and NDVI (normalized difference vegetation index) responses of four wheat cultivars to growth retardant cycocel under terminal drought stress conditions. The experiment was laid out as a split split plot with three replicates at the experimental farm of the School of Agriculture, Shiraz University, Shiraz, Iran in 2016-201...
متن کاملWheat (Triticum aestivum L.) Growth and Yield as Influenced by Flooding and Salinity Stresses in Northern Iran
Salinity and flooding are as two very important factors of soil degradation. They often occur together and cancause severe damage to plants. However, plant response to environmental stresses may vary with growth stage atwhich exposure occurs. A pot study was conducted in 2005-2006 in northern Aq Qala (northern Iran) to studycombine effects of waterlogging and soil salinity at different growth s...
متن کاملTansley review What have we learned from 15 years of free - air CO 2 enrichment ( FACE ) ? A meta - analytic review of the responses of photosynthesis , canopy properties and plant production to rising CO 2
Free-air CO 2 enrichment (FACE) experiments allow study of the effects of elevated [CO 2 ] on plants and ecosystems grown under natural conditions without enclosure. Data from 120 primary, peer-reviewed articles describing physiology and production in the 12 large-scale FACE experiments (475–600 ppm) were collected and summarized using meta-analytic techniques. The results confirm some results ...
متن کامل